On the reaction of azulen-2-ylmethylene(triphenyl)phosphorane. Convenient preparation of azuleno[1,2-f]- and azuleno[1,2-a]azulenes and their properties

Tohru Takayasu and Makoto Nitta *
Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan

Novel azulen-2-ylmethyl(triphenyl)phosphonium bromide has been shown to be a synthon for a rapid new annulation leading to azulenoazulenes. The base treatment of the phosphonium bromide generating azulen-2-ylmethylenephosphorane 9 in situ and subsequent reaction with 5-(dimethyl-aminomethylene)cyclopenta-1,3-dienecarbaldehyde 10 and 2-chlorotropone 14 affords unsubstituted azuleno[1,2-f]- and azuleno[1,2-a]-azulenes 1 and 2, respectively. The reaction of 9 with 2 -chloro-3,5,7trideuteriotropone has also been carried out to elucidate the reaction paths leading to the formation of 2 . The reaction paths involve the Michael-type addition of 9 onto 10 and 14, subsequent proton migration to regenerate the phosphorane moiety, intramolecular condensation of the formyl and carbonyl groups (Wittig reaction) and aromatization. In order to gain insight into the mechanism, PM3 calculations on compounds 9,10 and 14 as well as on the related compound, (azulen-2-ylimino)tributylphosphorane, have been performed. The reactivity and site-selectivity of the annulation are discussed on the basis of frontier molecular orbital (FMO) theory. The electrophilic aromatic substitution of the azulenoazulenes as well as their spectroscopic and electrochemical properties have also been analyzed.

Fairly large resonance energies were predicted for the 12 isomers of cata-condensed azulenoazulenes; ${ }^{1}$ subsequently, ${ }^{1}$ substituted azuleno[1,2-f]azulene $\mathbf{1}^{2}$ and azuleno[1,2-b]azulene ${ }^{3}$ were synthesized, and unsubstituted azuleno[2,1-e]azulene ${ }^{4}$ as well as azuleno[1,2-a]azulene $\mathbf{2}^{5}$ were also prepared.

The singlet transitions and molecular diagrams for a derivative of $\mathbf{1},{ }^{2}$ azuleno $[1,2-b]$ azulene, ${ }^{8}$ and $\mathbf{2}^{8}$ have been calculated, and the experimental results are in good accordance with the theoretical predictions. In a series of studies of (vinylimino)phosphoranes, ${ }^{6}$ which provide a convenient route to pyrroles, pyridines, pyridinophanes, 1 -azaazulenes, and methanocycloundeca $[b]$ pyrroles, (azulen-2-ylimino)- and (1-azaazulen-2-ylimino)phosphoranes $\mathbf{3 a}$ and $\mathbf{3 b}$ have been found to react with 2-halogenotropones in an enamine alkylation process followed by an aza-Wittig reaction to give 6 -aza- and 6,7-diaza-azuleno[1,2-a]azulenes $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively. ${ }^{7}$ The singlet transitions and molecular diagrams for $\mathbf{4 a}$ and $\mathbf{4 b}$ have also been calculated, and the experimental results support the theor-
etical predictions. ${ }^{9}$ In relation to the chemistry of (vinylimino)phosphoranes, we have previously reported a novel reaction of prop-2-enylidene(triphenyl)phosphoranes with 2 -substituted tropones to give azulene derivatives. ${ }^{10}$ In this context, we planned to take advantage of the methodology for convenient preparation of azulenoazulene ring systems by utilizing the reaction of novel azulen-2-ylmethylene(triphenyl)phosphorane $\mathbf{9}$, which is a hydrocarbon analogue of $\mathbf{3 a}$ and $\mathbf{3 b}$. We describe herein the reaction of 9 with 5 -(dimethylaminomethylene)-cyclopenta-1,3-dienecarbaldehyde $\mathbf{1 0}$ and 2-chlorotropone $\mathbf{1 4}$ to give azuleno[1,2-f]- and azuleno[1,2-a]-azulenes $\mathbf{1}$ and $\mathbf{2}$ in good to modest yields. In order to clarify the pathways for the formation of 2, the reaction of 2-chloro-3,5,7-trideuteriotropone 14-D was also studied. In order to gain insight into the mechanistic aspects, PM3 calculations on compounds $\mathbf{9}, \mathbf{1 0}$ and $\mathbf{1 4}$ as well as on the related compound $\mathbf{3 a}$ were also performed, and reactivity and site selectivity for $\mathbf{9}$ and $\mathbf{3 a}$ are discussed on the basis of frontier molecular orbital (FMO) theory. Furthermore, electrophilic aromatic substitution of $\mathbf{1}$ and $\mathbf{2}$ as well as spectroscopic and electrochemical properties have also been studied.

Results and discussion

The preparation of 2-formylazulene $\mathbf{5}$ was performed through the so-called enamine method ${ }^{11}$ utilizing cyclohepta $[b] f$ furan2 -one and the pyrrolidine enamine derived from 2 -oxopropanal dimethyl acetal. ${ }^{12}$ The reduction of 5 easily gave 2 hydroxymethylazulene $\mathbf{6}$, the physical data of which are in good accordance with those reported in the literature. ${ }^{13}$ 2-Bromomethylazulene 7 , which was prepared by the reaction of 6 with tetrabromomethane and triphenylphosphine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reacted slowly with PPh_{3} to give the desired azulen-2-ylmethyl(triphenyl)phosphonium bromide 8 (Scheme 1). Although compound 7 gave no satisfactory analytical data because of its lability above $40^{\circ} \mathrm{C}$ in solution, correct HRMS data were obtained for 7 . Thus the structures of $\mathbf{7}$ and $\mathbf{8}$ were determined on the basis of their physical data.

The azulen-2-ylmethylene(triphenyl)phosphorane 9 , which

Scheme 1 Reagents and conditions: i, $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 0.5 h ; iii, $\mathrm{PPh}_{3}, \mathrm{PhH}$, room temp., 6 days; iv, $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$
was prepared in situ through the reaction of $\mathbf{8}$ with $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$, reacted with $\mathbf{1 0}$ to give $\mathbf{1}$ in good yield. The structure of $\mathbf{1}$ was assigned on the basis of the physical data (vide infra). The reaction pathways are postulated as depicted in Scheme 2 in

analogy with the reaction of (vinylimino)phosphorane with the aldehyde 10. ${ }^{14}$ A Michael-type addition of 9 onto $\mathbf{1 0}$ gives the intermediate 11. The facile Michael-type addition is ascribed to the low resonance energy of azulene $\left[12.8 \mathrm{kcal} \mathrm{mol}^{-1}\right.$; resonance energy per electron (REPE): $1.28 \mathrm{kcal} \mathrm{mol}^{-1}$] as compared to, for example, that of benzene ($26.1 \mathrm{kcal} \mathrm{mol}^{-\mathbf{1}}$; REPE: 4.35 kcal $\left.\mathrm{mol}^{-1}\right),{ }^{15}$ as well as to a stability of the intermediate 11, which exist as a resonance hybrid of $\mathbf{1 1 A}$ and 11B. The hydrogen migration in 11 regenerates the phosphorane $\mathbf{1 2}$, which undergoes intramolecular Wittig reaction followed by aromatization to eliminate $\mathrm{Me}_{2} \mathrm{NH}$ and give $\mathbf{1}$. In a similar fashion, a solution of 9 in DMSO reacted with 14 to give 2, which was identical with an authentic specimen obtained previously through an alternative procedure. ${ }^{5}$ Furthermore, the reaction of 9 with 14-D ${ }^{16}$ afforded 2,4-dideuterioazuleno[1,2-a]azulene 2-D, the structure of which was assigned on the basis of HRMS and comparison of the physical data with those of $2 .{ }^{5}$ The unequivocally assigned ${ }^{1} \mathrm{H}$ NMR spectrum clearly shows that the deuterium is located at $\mathrm{C}-2$ and $\mathrm{C}-4$ in $\mathbf{2 - D}$. The reaction pathways for the formation of $\mathbf{2}$ and 2-D are also deduced to be similar to those of the reaction of (vinylimino)phosphoranes with 14 (Scheme 3). ${ }^{17}$ The Michael-type alkylation of 9 onto

Scheme 3
C-7 of $\mathbf{1 4}$ and 14-D gives the intermediate $\mathbf{1 5}$. The hydrogen migration in $\mathbf{1 5}$ regenerates a phosphorane moiety in 16 , which undergoes intramolecular Wittig reaction to give 17. Compound $\mathbf{1 7}$ undergoes aromatization eliminating HCl or DCl to give $\mathbf{2}$ and 2-D.

As previously reported, (azulen-2-ylimino)phosphorane 3a also reacted with $\mathbf{1 4}$ as in the case of 9 to give 6-azaazuleno[1,2-a]azulene 4a. ${ }^{7}$ In contrast to the behaviour of 9 and several (vinylimino)phosphoranes, ${ }^{14}$ however, 3a failed to react with $\mathbf{1 0}$ in a Michael-type addition leading to 5-azaazuleno[1,2-f]azulene 18 and, instead, 6-(azulen-2-ylaminomethylene)cyclopenta-1,3dienecarbaldehyde 19 was obtained (Scheme 4). ${ }^{7}$ Compound 19

Scheme 4 Reagents and conditions: i, toluene, reflux and adventitious water or SiO_{2}
probably arises from an aza-Wittig reaction of the imine nitrogen of 3a with the formyl group of $\mathbf{1 0}$ or from a Michael-type addition of the imine nitrogen of $\mathbf{3 a}$ onto the methylene group of $\mathbf{1 0} .{ }^{14}$ On consideration of calculated data by the MNDO method for a model compound $\left(\mathrm{PH}_{3}\right.$ derivative instead of PBu_{3} in 3a), ${ }^{\mathbf{1 4}}$ the site-selectivity observed for $\mathbf{3 a}$ is ascribed to the high electron density on the nitrogen atom of the compound. Thus, in order to gain insight into the reactivity of compound 9 towards 10 and 14, as compared to that of 3a, PM3 calculations, which are also applicable for hypervalent compounds, were performed. ${ }^{18}$ The calculated energy levels of LUMO for $\mathbf{1 0}$ $(-0.88 \mathrm{eV})$ and $14(-1.15 \mathrm{eV})$, and of HOMO for $\mathbf{9}(-6.64 \mathrm{eV})$

LUMO : -0.88 eV
10

LUMO : - 1.15 eV 14 5.49 eV

HOMO : -6.64 eV 9

Fig. 1 Calculated energy levels and coefficients of LUMO and HOMO

10

3a

14

9

Fig. 2 Charge densities of 10, 14, 3a and 9
and $\mathbf{3 a}(-7.14 \mathrm{eV})$ as well as coefficients of LUMO and HOMO are depicted in Fig. 1. The calculated electron densities are also summarized in Fig. 2. The energy difference (5.76 eV) of the $\operatorname{HOMO}(9)-\operatorname{LUMO}(\mathbf{1 0})$ interaction is smaller than that (6.26 eV) of the $\operatorname{HOMO}(\mathbf{3 a})-\operatorname{LUMO}(\mathbf{1 0})$ interaction. The carbon adjacent to the phosphorane of 9 has the largest coefficient (0.58) in its HOMO, but its attack onto C-6 of $\mathbf{1 0}$ experiences considerable steric hindrance at the reaction sites and the process would not afford $\mathbf{1}$. Thus, one may consider that $\mathrm{C}-1$ having a large coefficient (0.48) of the HOMO in 9 attacks at C-6 having a large coefficient (0.55) of LUMO in $\mathbf{1 0}$ leading to $\mathbf{1}$ (Fig. 1 and Scheme 2). The large energy difference (6.26 eV) of HOMO(3a)-LUMO(10) presumably prevents the attack of C-1 of $\mathbf{3 a}$ onto C-6 of $\mathbf{1 0}$ leading to $\mathbf{1 8}$. Thus, high charge density (-0.66) causes attack of the nitrogen atom of 3 a onto the formyl group in 10 leading to 19 (Fig. 2 and Scheme 4). ${ }^{14}$ The charge-controlled reaction is not observed in the reaction of 9 with $\mathbf{1 0}$ despite the high charge density (-0.97) of the methylene carbon atom of 9 ($c f$. Scheme 4). According to previous studies, the tropone $\mathbf{1 4}$ generally reacts with (vinylimino)phosphoranes as well as 3 a to give 1 -azaazulenes. ${ }^{6,17}$ Considering the present reaction of 9 with 14, which has a low-lying LUMO as compared with that of $\mathbf{1 0}, 9$ reacts with $\mathbf{1 4}$ readily to give 2 . The energy difference (5.49 eV) of the $\mathrm{HOMO}(9)-\mathrm{LUMO}(\mathbf{1 4})$ interaction is even smaller than that $(5.99 \mathrm{eV})$ of the $\mathrm{HOMO}(3 \mathbf{a})-$ LUMO(14). The site-selectivity observed in the reaction of 9 with 14-D is interesting. The LUMO coefficient of C-7 is slightly smaller than that of C-2 in $\mathbf{1 4}$ (and then 14-D), but $\mathbf{9}$ attacks C-7 preferentially to give 2 (and then 2-D) (Scheme 3). Thus, one may consider that the steric effect of the Cl substituent at C-2 prevents a preferential attack at C-2 in $\mathbf{1 4}$ (and then $\mathbf{1 4 - D}$). As reported previously, the β-carbon atom of (vinyl-
imino)phosphorane attacks C-7 of $\mathbf{1 4},{ }^{16}$ and the site-selectivity is similar to that of the nucleophilic reaction of $14 .{ }^{19}$ This feature is not always essential, however, and substituted (prop-2-enylidene)phosphoranes undergo reaction at both C-2 and C-7 of $\mathbf{1 4} .^{10}$ Thus, subtle electronic and/or steric effects seem to be operative in the site-selectivity of the reaction towards 14.
Azulene undergoes electrophilic substitution at the $\alpha-$ position in the smaller ring with a wide range of reagents under exceptionally mild conditions (no Lewis acid required). ${ }^{20}$ The results are fully consistent with theoretical predictions and with the known polarization of azulenes, which concentrates electron density in the five-membered ring. Treatment of azulenoazulene 1 with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ and NEt_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ gave $\mathbf{2 0}$ in good yield after recrystallization from EtOH. In a similar fashion, the reaction of $\mathbf{2}$ with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ gave $\mathbf{2 1},{ }^{5}$ which was previously prepared by an alternative procedure (Scheme 5).

20

21

22

23

Scheme 5 Reagents and conditions: i, $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2}, 0^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$
The electrophilic attack occurred at C-1 for $\mathbf{1}$ and $\mathrm{C}-11$ for $\mathbf{2}$. The result obtained for $\mathbf{1}$ is consistent with the Vilsmeier reaction of 5 -cyanoazuleno[1,2-f]azulenes, ${ }^{2}$ which underwent electrophilic substitution at the $\mathrm{C}-1$ position, and thus the siteselectivity is discussed on the basis of ${ }^{13} \mathrm{C}$ NMR and calculated charge density as well as HOMO coefficients (vide infra). The high reactivity and site-selectivity of aromatic substitution in azulenes is commonly explained by the exceptional stability of an intermediate which contains a tropylium ion. The intermediacy of cycloheptazulenium ion $\mathbf{2 2}^{21}\left(\mathrm{E}=\mathrm{COCF}_{3}\right)$ and tropylium ion $23\left(\mathrm{E}=\mathrm{COCF}_{3}\right)$ in aromatic substitution onto $\mathbf{1}$ and 2 would explain the corresponding high reactivity and siteselectivity reported here for $\mathbf{1}$ and 2. Direct support for this explanation was obtained from the ${ }^{1} \mathrm{H}$ NMR spectra of solutions of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. These spectra clearly indicated that quantitative protonation had occurred at $\mathrm{C}-1$ of $\mathbf{1}$ and C-11 of 2 to produce $22(\mathrm{E}=\mathrm{H})$ and $23(\mathrm{E}=\mathrm{H})$, respectively (Experimental section). Quenching of the acid solutions regenerated $\mathbf{1}$ and 2. Azulene can also be protonated to give a tropylium ion in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} .{ }^{22}$

The structures of $\mathbf{1}$ and $\mathbf{2 0}$ were characterized on the basis of their ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR and electronic spectral data, as well as HRMS and elemental analyses. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1 were assigned by aid of a COSY spectrum. The average chemical shift of protons of H-7, H-8, H-9, H-10 and $\mathrm{H}-11$ for $\mathbf{1}\left(\delta_{\mathrm{av}}=7.81\right)$ is slightly lower than that of sevenmembered ring protons of azulenes ($\delta_{\mathrm{av}}=7.47$). ${ }^{23}$ The observed coupling constants between neighbouring protons ($J_{8,9} 9.8, J_{10,11}$ 8.8 and $J_{7,8}=J_{9,10} 10.3$) are different. In addition, the large coupling constant $J_{4,5} 10.4$ suggests substantial double-bond
character between $\mathrm{C}-4$ and $\mathrm{C}-5$. Thus, the existence of bond-length alternation in $\mathbf{1}$ is suggested. Thus, the canonical structure $\mathbf{1 A}$ seems to be more important than the canonical structures 1B and 1C, and the contribution of peripheral 18π conjugation in $\mathbf{1}$ seems to be small (Fig. 3). Furthermore,

1B
Fig. 3 Canonical structures of 1
assignments for the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ clearly indicate that the chemical shift of $\mathrm{C}-1$ appearing at $\delta 117.9$ is higher than the shifts of C-3 ($\delta 121.8$) and C-6 ($\delta 122.0$); this suggests a high electron density at $\mathrm{C}-1$. The positions of protonation onto 1 and 2 giving $22(\mathrm{E}=\mathrm{H})$ and $23(\mathrm{E}=\mathrm{H})$ are in good agreement with the highest chemical shift of $\mathrm{C}-1$ for $\mathbf{1}$ as well as of $\mathrm{C}-11$ for $\mathbf{2}$; ${ }^{5}$ the trifluoroacetylation, therefore, also occurred at C-1 of $\mathbf{1}$ and $\mathrm{C}-11$ of $\mathbf{2}$ to give $\mathbf{2 0}$ and 21, respectively. Considering the calculated charge densities for $\mathbf{1}, \mathrm{C}-1(-0.17)$ has a slightly smaller value than C-6 (-0.18) and the same as C-3 (-0.17) (Fig. 4); however, the HOMO coefficient at $\mathrm{C}-1(-0.37)$ is larger

charge densities

charge densities

HOMO : -7.65 eV

Fig. 4 Calculated charge densities and energy levels and coefficients HOMO of $\mathbf{1}$ and $\mathbf{2}$
than that of C-6 (0.03) but smaller than that of C-3 (0.52). Thus, the calculated charge densities and HOMO coefficients seem to provide a discrepancy in the protonation and trifluoroacetylation, the site-selectivities of which are in good accordance with the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1}$. The electrophilic substitution occurring at $\mathrm{C}-11$ in $\mathbf{2}$ is in good accordance with the calculated high charge density and the large HOMO coefficient at C-11 in 2 (Fig. 4).

Although all the proton signals of $\mathbf{2 0}$ are shifted downfield as compared to those of $\mathbf{1}$, the very low chemical shift of $\mathrm{H}-12\left(\delta_{\mathrm{H}}\right.$ 11.04), suggests that the COCF_{3} group is introduced at the $\mathrm{C}-1$ position, and not at the C-3 or C-6 positions. The ${ }^{13} \mathrm{C}$ NMR clearly indicates that the carbon signals of $\mathbf{2 0}$ are also shifted to lower field. The observed coupling constants between neighbouring protons ($J_{7,8} 10.2, J_{8,9} 9.9, J_{9,10} 9.4$ and $J_{10,11} 8.7$) are different from those of $\mathbf{1}$, and suggest a slight decrease of bondlength alternation. The feature is not observed in compounds 2 and 21. ${ }^{5}$ The electronic spectrum of 1 observed is shifted to longer wavelength as compared to that of $2 .{ }^{5}$ The longest

Table 1 Oxidation and reduction potentials (V) and calculated energy levels of HOMO and LUMO (eV) of compounds 1, 2, 20 and 21

Compd.	$E^{\text {ox }}$	$E^{\text {Red }}$	HOMO^{a}	LUMO a
$\mathbf{1}$	0.48	-1.44	-7.86	-1.52
$\mathbf{2 0}$	0.68	-1.16	-8.33	-2.00
$\mathbf{2}$	0.53	-1.55	-7.65	-1.41
$\mathbf{2 1}$	0.56	-1.02	-7.99	-1.81

${ }^{a}$ PM3 calculations were carried out by using MOPAC program. ${ }^{18}$
absorption maximum of $\mathbf{1}$ shifted to longer wavelength by $c a$. 10 nm compared with that of 5 -cyanoazuleno $[1,2-f]$ azulenes. ${ }^{2}$ The introduction of the COCF_{3} group causes a drastic blue shift in the electronic spectrum, and this feature is general for azulene systems. As an indication of the electronic properties of the azulenoazulene ring systems, it should be noted that the carbonyl stretching band in the IR spectra of $\mathbf{2 0}$ and $\mathbf{2 1}$ appears at 1653 and $1708 \mathrm{~cm}^{-1}$, values which are lower than that for trifluoroacetylbenzene $\left(1720 \mathrm{~cm}^{-1}\right)$, though not as low as that for trifluoroacetylazulene $\left(1645 \mathrm{~cm}^{-1}\right) .{ }^{19 d}$ Thus, the $\mathrm{CF}_{3} \mathrm{CO}$ group is suggested to be co-planar with the aromatic ring in 20, but not co-planar in 21.

Cyclic voltammetry of the azuleno[1,2-f] azulenes $\mathbf{1}$ and $\mathbf{2 0}$ as well as the azuleno[1,2-a]azulenes 2 and 21 in $\mathrm{CH}_{3} \mathrm{CN}$ gave irreversible oxidation and reduction waves, and each of the half-height potentials were measured independently. The results and the calculated energies of HOMO and LUMO, predicted by PM3 calculations ${ }^{18}$ are listed in Table 1. For compounds 1 and $\mathbf{2 0}$, the $E^{0 x}$ of the former exhibits a small positive value as compared with that of the latter, while the $E^{\text {Red }}$ of the former exhibits a larger negative value than that of the latter. These features are clearly reflected in a lowering of the calculated energy levels of HOMO and LUMO of 20, which has an electron-withdrawing COCF_{3} group, as compared with those of $\mathbf{1}$. These features are similar to those of the azuleno[1,2-a]azulenes $\mathbf{2}$ and 21.

In summary, the use of azulen-2-ylmethylene(triphenyl)phosphorane 9 with 6-(dimethylaminomethylene)cyclopenta-1,3-dienecarbaldehyde $\mathbf{1 0}$ and 2-chlorotropone $\mathbf{1 4}$ is advantageous for the preparation of azulenoazulene ring systems. The reactivity of 9 was suggested on the basis of the FMO theory. Further studies concerning reaction of azulenoazulene ring systems are now underway.

Experimental

IR spectra were recorded on a Shimadzu IR-400 spectrometer. Electronic spectra were measured on a Shimadzu UV-3101PC spectrometer. Mass spectra and high resolution mass spectra were run on JMS-AUTOMASS and JEOL JMS-SX102A spectrometers. Unless otherwise specified, ${ }^{1} \mathrm{H}$ NMR $(90 \mathrm{MHz}$ and 400 MHz) spectra were recorded on Hitachi R-90 and JNM-GSX-400 spectrometers and ${ }^{13} \mathrm{C}$ NMR (100.6 MHz) spectra were recorded on a JNM-GSX-400 spectrometer in CDCl_{3} and the chemical shifts are given relative to internal SiMe_{4} standard. J Values are given in Hz . Microanalyses were performed at the Material Characterization Central Laboratory, Waseda University. Mps were recorded on Yamato MP-21 apparatus and are uncorrected. All the reactions were performed under anhydrous conditions and dry nitrogen atmosphere.

2-Hydroxymethylazulene 6

To a stirred solution of $\mathrm{NaBH}_{4}(29 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{EtOH}(3$ cm^{3}) was added a solution of $5(117 \mathrm{mg}, 0.75 \mathrm{mmol})$ in EtOH $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was further stirred for 1 h at $0^{\circ} \mathrm{C}$ after which it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give $6(119 \mathrm{mg}, 100 \%)$ as purple plates, mp 117-118 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{13} \mathrm{mp} 117-118^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.87$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.16(2 \mathrm{H}, \mathrm{dd}, J 9.2,9.5), 7.34(2 \mathrm{H}, \mathrm{s})$, $7.56(1 \mathrm{H}, \mathrm{t}, J 9.5)$ and $8.25(2 \mathrm{H}, \mathrm{d}, J 9.2)$.

2-Bromomethylazulene 7

To a stirred solution of $6(120 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(295$ $\mathrm{mg}, 1.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CBr}_{4}(278 \mathrm{mg}$, 0.84 mmol) at RT, and the mixture was stirred for 30 min . The reaction mixture was then chromatographed on Florisil using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give $7(167 \mathrm{mg}, 100 \%)$ as violet plates, mp $114-115^{\circ} \mathrm{C}$ (from PhH -hexane); $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 4.80(2 \mathrm{H}, \mathrm{s})$, $6.90-7.60(5 \mathrm{H}, \mathrm{m})$ and $8.18(2 \mathrm{H}, \mathrm{d}, J 10.0)$; m / z (rel. int.) 220 $\left(\mathrm{M}^{+}, 97\right), 222\left(\mathrm{M}^{+}, 99\right)$ and 139 (100%) (Found: $\mathrm{M}^{+}, 219.9858$. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Br}$ requires $M, 219.9888$).

Azulen-2-ylmethyl(triphenyl)phosphonium bromide 8

To a stirred solution of $7(167 \mathrm{mg}, 0.75 \mathrm{mmol})$ in benzene (10 cm^{3}) was added $\mathrm{PPh}_{3}(399 \mathrm{mg}, 1.5 \mathrm{mmol})$ and the mixture was stirred for 6 days at RT. The precipitate was collected and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the phosphonium salt $\mathbf{8}$ ($340 \mathrm{mg}, 94 \%$) as blue plates, $\mathrm{mp} 257-258^{\circ} \mathrm{C}$ (decomp.) (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 5.56(2 \mathrm{H}, \mathrm{d}, J 15.4), 7.02(2 \mathrm{H}, \mathrm{s}), 7.31-$ $7.80(18 \mathrm{H}, \mathrm{m})$ and $8.10(2 \mathrm{H}, \mathrm{d} J 9.5)$ [Found: C, $72.1 ; \mathrm{H}, 5.2 \%$; $\mathrm{M}^{+}-\mathrm{HBr}, 402.1508 . \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{PBr}$ requires $\mathrm{C}, 72.06 ; \mathrm{H}, 5.00 \%$; M, 483.3924].

Azuleno[1,2-f]azulene 1

To a stirred solution of the phosphonium salt $\mathbf{8}(96 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in DMSO $\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(0.5 \mathrm{~m}$ toluene solution; $\left.0.4 \mathrm{~cm}^{3}, 0.2 \mathrm{mmol}\right)$ and HMPA $\left(0.2 \mathrm{~cm}^{3}\right)$; the violet solution turned dark red immediately. To this solution was added a solution of $\mathbf{1 0}(45 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\operatorname{DMSO}\left(2 \mathrm{~cm}^{3}\right)$, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After this the reaction mixture was extracted with AcOEt-hexane (1:5). The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford a residue which was purified by TLC on silica gel (hexaneAcOEt, 5:1) to give $1(34 \mathrm{mg}, 75 \%)$ as dark green plates, mp $157-159{ }^{\circ} \mathrm{C}$ (decomp.) (from hexane); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.24(1 \mathrm{H}$, dd, $J 10.3,9.8, \mathrm{H}-8), 7.40(1 \mathrm{H}, \mathrm{dd}, J 10.3,8.8, \mathrm{H}-10), 7.50(1 \mathrm{H}$, d, $J 10.4, \mathrm{H}-5), 7.51$ (1 H , dd, $J 9.8,10.3, \mathrm{H}-9$), $7.52(1 \mathrm{H}, \mathrm{d}, J 3.8$, $\mathrm{H}-1), 7.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.53(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-3), 7.60(1 \mathrm{H}, \mathrm{dd}, J$ $3.6,3.8, \mathrm{H}-2), 8.16(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{H}-4), 8.17(1 \mathrm{H}, \mathrm{d}, J 10.3, \mathrm{H}-7)$, $8.71(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-11)$ and $9.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz})$ 117.9 (C-1), 121.8 (C-3), 122.0 (C-6), 123.6 (C-5), 124.3 (quat. C), 126.9 (C-8), 126.9 (C-10), 129.2 (C-11), 130.5 (C-2), 131.1 (C-12), 134.0 (C-4), 134.1 (quat. C), 134.9 (C-7), 135.3 (quat. C), 135.4 (C-9), 142.5 (quat. C), 144.1 (quat. C) and 149.7 (quat. C); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1595(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }($ hexane $) / \mathrm{nm}(\log \varepsilon) 456$ (4.18), 551 (4.04), 726 (3.59), 776 (3.11) and 811 (3.15); m / z (rel. int.) $228\left(\mathrm{M}^{+}, 100\right)$ (Found: $\mathrm{M}^{+}, 228.0912 ; \mathrm{C}, 94.5 ; \mathrm{H}, 5.1 \%$. $\mathrm{C}_{18} \mathrm{H}_{12}$ requires $M, 228.0939$; C, $\left.94.70 ; \mathrm{H}, 5.30 \%\right)$.

Azuleno[1,2-a]azulene 2 and 2,4-dideuterioazuleno[1,2-a]azulene 2-D

To a stirred solution of the phosphonium salt $(96 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in $\operatorname{DMSO}\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(0.5 \mathrm{~m}$ solution in toluene; $0.4 \mathrm{~cm}^{3}, 0.2 \mathrm{mmol}$). The violet solution turned dark red immediately. To this solution was added 2-chlorotropone or 2-chloro-3,5,7-trideuteriotropone (42 mg or $43 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . After this it was extracted with hexane-AcOEt (5:1). The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was purified by TLC on silica gel (hexane-AcOEt, 5:1) to give 2 (16 $\mathrm{mg}, 35 \%$), which was identical with an authentic specimen, of 2-D ($16 \mathrm{mg}, 35 \%$). For 2-D: dark brown needles, $\mathrm{mp} 152-153{ }^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.30(1 \mathrm{H}, \mathrm{dd}, J 8.4,10.4, \mathrm{H}-9), 7.39$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-11,12$), 7.46 ($1 \mathrm{H}, \mathrm{dd}, J 10.4,8.6, \mathrm{H}-7$), 7.49 (1H, dd, J $8.4,10.4, \mathrm{H}-8), 7.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3), 8.31(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{H}-10)$, $8.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 8.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5)$ and $8.91(1 \mathrm{H}, \mathrm{d}, J 8.6$, $\mathrm{H}-6$); m / z (rel. int.) $230\left(\mathrm{M}^{+}, 100 \%\right.$) (Found: $\mathrm{M}^{+}, 230.1097$. $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{D}_{2}$ requires $M, 230.1065$).

Trifluoroacetylation of azuleno[1,2-f]azulene 1
To a stirred solution of $\mathbf{1}(46 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(200 \mathrm{mg}$
$2.0 \mathrm{mmol})$ was added a solution of $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(210 \mathrm{mg}, 1.0$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was further stirred at $0^{\circ} \mathrm{C}$ for 1 h after which it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford a residue. This was chromatographed on silica gel (hexane-AcOEt, $5: 1)$ to give $20(65 \mathrm{mg}, 99 \%)$ as dark brown prisms, mp 194$196{ }^{\circ} \mathrm{C}$ (decomp.) (from EtOH); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.34(1 \mathrm{H}, \mathrm{d}, J 4.7$, $\mathrm{H}-3), 7.53$ ($1 \mathrm{H}, \mathrm{dd}, J 10.2,9.9, \mathrm{H}-8$), $7.70(1 \mathrm{H}, \mathrm{dd}, J 9.9,9.4$, H-9), 7.76 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), $7.83(1 \mathrm{H}, \mathrm{dd}, J 9.4,8.7, \mathrm{H}-10), 8.04(1 \mathrm{H}$, d, $J 10.4, \mathrm{H}-5), 8.22-8.24(1 \mathrm{H}, \mathrm{dm}, J 4.7, \mathrm{H}-2), 8.35(1 \mathrm{H}, \mathrm{d}, J$ 10.4, H-4), 8.43 ($1 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{H}-7$), $9.24(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-11)$ and $11.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}) 116.4\left(\mathrm{CF}_{3}\right), 118.8$ (quat. C), 122.0, 122.7, 125.0, 128.7, 129.0, 129.4 (quat. C), 133.1, 134.1, 134.6 (quat. C), 134.9, 136.7, 138.1 (2C), 138.2 (quat. C), 143.1 (quat. C), 144.3 (quat. C), 144.4 (quat. C) and 150.3 (quat. C); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1653(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }($ hexane $) /$ $\mathrm{nm}(\log \varepsilon) 284$ (3.33), 325 (3.14), 336 (3.14), 377 (2.98), 395 (3.04), 449 (3.44), 667 (1.75), 759 (1.17) and 7.80 (1.02); m/z (rel. int.) $324\left(\mathrm{M}^{+}, 31\right), 255$ (100\%) (Found: M^{+}, 324.0757; C, $73.8 ; \mathrm{H}, 3.3 \% . \mathrm{C}_{20} \mathrm{H}_{11} \mathrm{OF}_{3}$ requires $M, 324.0762 ; \mathrm{C}, 74.07 ; \mathrm{H}$, 3.42%).

Trifluoroacetylation of azuleno[1,2-a]azulene 2

To a stirred solution of $2(46 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(200 \mathrm{mg}$, $2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added a solution of $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(210 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The mixture was further stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , after which it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and the residue was purified by column chromatography on silica gel (hexane-AcOEt, 5:1) to give 21 (53 mg , 81%), which was identical with an authentic specimen. ${ }^{5}$ For 21: $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1708(\mathrm{C}=\mathrm{O})$.
${ }^{1}$ H NMR spectra of compounds 1 and 2 in trifluoroacetic acid
To the solution of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CDCl}_{3}\left(0.6 \mathrm{~cm}^{3}\right)$ were added a few drops of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and the spectra were recorded on a spectrometer at ambient temperature. For $22(\mathrm{E}=\mathrm{H})$: a purple solution; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.37(2 \mathrm{H}, \mathrm{br}$ s), $7.54-7.57(1 \mathrm{H}, \mathrm{m}), 7.75-7.77$ $(1 \mathrm{H}, \mathrm{m}), 8.18(1 \mathrm{H}, \mathrm{t}, J 10.0,9.8), 8.22(1 \mathrm{H}, \mathrm{s}), 8.28(1 \mathrm{H}, \mathrm{dd}, J$ $10.5,9.0), 8.46(1 \mathrm{H}, \mathrm{dd}, J 9.3,10.4), 8.52(1 \mathrm{H}, \mathrm{d}, J 10.9), 8.99$ $(1 \mathrm{H}, \mathrm{d}, J 10.4), 9.05(1 \mathrm{H}, \mathrm{d}, J 10.6), 9.74(1 \mathrm{H}, \mathrm{d}, J 9.3)$ and 9.90 $(1 \mathrm{H}, \mathrm{s})$. For $23(\mathrm{E}=\mathrm{H})$: a purple solution; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.37$ $(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.43(1 \mathrm{H}, \mathrm{s}), 7.88-8.04(4 \mathrm{H}, \mathrm{m}), 8.15-8.26(3 \mathrm{H}, \mathrm{m})$, $8.67(1 \mathrm{H}, \mathrm{d}, J 10.4), 8.87(1 \mathrm{H}, \mathrm{d}, J 10.9)$ and $9.11(1 \mathrm{H}, \mathrm{d}, J 9.4)$.

Cyclic voltammetry of compounds $1,2,20$ and 21

The oxidation and reduction potentials of compounds 1, 2, 20 and 21 were determined by means of a CV-27 voltammetry controller (BAS Co.). A three-electrode cell was used, consisting of Pt working and counter electrodes and a reference $\mathrm{Ag} /$ AgNO_{3} electrode. Nitrogen was bubbled through an acetonitrile solution $\left(4 \mathrm{~cm}^{3}\right)$ of each of the compounds $(1 \mathrm{mmol}$ dm^{-3}) and $\mathrm{Bu}_{4} \mathrm{NClO}_{4}\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ to deaerate it. The measurements were made at a scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$, and the voltammograms were recorded on a WX-1000-UM-010 (Graphtec Co.) X-Y recorder. Immediately after measurements, ferrocene $(0.1 \mathrm{mmol})\left(E_{\frac{1}{2}}=+0.083\right)$ was added as an internal standard, and the observed cathodic or anodic peak potential was corrected with reference to this standard. The compounds exhibited no reversible reduction or oxidation waves, and each of the potentials was measured in an independent scan; the results are summarized in Table 1.

Acknowledgements

The financial support from Waseda University Grant for Special Research Project is gratefully acknowledged. The authors also thank the Material Characterization Central Laboratory, Waseda University for technical support of spectral data and elemental analyses.

References

1 B. A. Hess, Jr. and L. J. Schaad, J. Org. Chem., 1971, 36, 3418.
2 C. Jutz, H. G. Peuker and W. Kosbahn, Synthesis, 1976, 673.
3 T. Toda, N. Shimazaki, T. Mukai and C. Kabuto, Tetrahedron Lett., 1980, 21, 4001.
4 Z. Yoshida, M. Shibata, E. Ogino and T. Sugimoto, Tetrahedron Lett., 1984, 25, 3343.
5 M. Nitta, K. Nishimura and Y. Iino, Tetrahedron Lett., 1993, 34, 2157.

6 M. Nitta, Reviews on Heteroatom Chemistry, ed. S. Oae, MYU, Tokyo, 1993, vol. 9, 87; and references cited therein.
7 M. Nitta, Y. Iino, T. Sugiyama and A. Akaogi, Tetrahedron Lett., 1993, 34, 831.
8 A. Toyota and T. Nakajima, Tetrahedron, 1981, 37, 2575.
9 M. Nitta, Y. Iino, T. Sugiyama and A. Toyota, Tetrahedron Lett., 1993, 34, 835
10 T. Takayasu and M. Nitta, J. Chem. Soc., Perkin Trans. 1, 1997, 681
11 P.-W. Yang, M. Yasunami and K. Takase, Tetrahedron Lett., 1971 4275; M. Yasunami, S. Miyoshi, N. Kanegae and K. Takase, Bull. Chem. Soc. Jpn., 1993, 66, 892; M. Yasunami, T. Hioki, Y. Kitamori, I. Kikuchi and K. Takase, Bull. Chem. Soc. Jpn., 1993, 66, 2273; and references cited therein.
12 K. Fujimori, K. Tuji and M. Yasunami, The 60th National Meeting of The Chemical Society of Japan, Hiroshima, October, 1990, Abstr. 1 E 117.
13 K. Fujimori, H. Kobayashi and M. Yasunami, The 61st National Meeting of the Chemical Society of Japan, Yokohama, May, 1991, Abstr. 2A535.
14 M. Nitta, Y. Iino, S. Mori and T. Takayasu, J. Chem. Soc., Perkin Trans. 1, 1995, 1001.

15 W. S. Roth, O. Adamaczak, R. Breuckmann, H.-W. Klenartz and R. Boese, Chem. Ber., 1991, 124, 2499.

16 E. J. Forbes, M. J. Gregory and D. C. Warrell, J. Chem. Soc. C, 1968, 1969.

17 M. Nitta, Y. Iino, E. Hara and T. Kobayashi, J. Chem. Soc., Perkin Trans. 1, 1989, 51.
18 MOPAC Ver. 6.00, J. J. P. Stewart, $Q C P E$ Bull., 1989, 9, 10; revised as Ver. 6.12 by D. Athansopoulos, $Q C P M, 1994,137$.
19 T. Nozoe and S. Seto, Proc. Jpn. Acad., 1954, 30, 473; G. Biggi, F. Del Cima and F. Pietra, J. Am. Chem. Soc., 1973, 95, 7101; F. Pietra, Acc. Chem. Res., 1979, 12, 132.

20 (a) A. G. Anderson, Jr., J. A. Nelson and J. J. Tazuma, J. Am. Chem. Soc., 1953, 75, 4980; (b) A. G. Anderson, Jr., R. Scotoni, Jr., E. J. Cowles and C. G. Fritz, J. Org. Chem., 1957, 22, 1193; (c) A. G. Anderson, Jr., R. G. Anderson and L. L. Replogle, Proc. Chem. Soc., 1960, 72; (d) A. G. Anderson, Jr. and R. G. Anderson, J. Org. Chem., 1962, 27, 3578; (e) L. J. Mathias and C. G. Overberger, J. Org. Chem., 1980, 45, 1701.

21 M. Yasunami, T. Amemiya and K. Takase, Tetrahedron Lett., 1983, 24, 69.
22 S. S. Danyluk and W. G. Schneider, J. Am. Chem. Soc., 1960, 82, 997.

23 J.-R. Llinas, D. Roard, M. Perbesy and E.-J. Vincent, Can. J. Chem., 1975, 53, 2911.

Paper 7/02716H
Received 21st April 1997
Accepted 2nd September 1997

